Measuring Resilience of (Authoritative) DNS

Florian Steurer, Amreesh Phokeer, Philip Paeps, Liz Izhikevich

DNS Resilience

- Internet is increasingly hosting mission-critical applications and services
- Regulations such as NIS2 (EU) and CSF2 (US) to protect critical infrastructures
- We propose a two-step approach to measure authoritative DNS resilience at Internet-scale
 - We extract multiple resilience metrics based on the name servers (NSes)
 of a zone
 - We develop a new method to aggregate arbitrary metrics over the full dependency graph of a domain

Resilience metrics

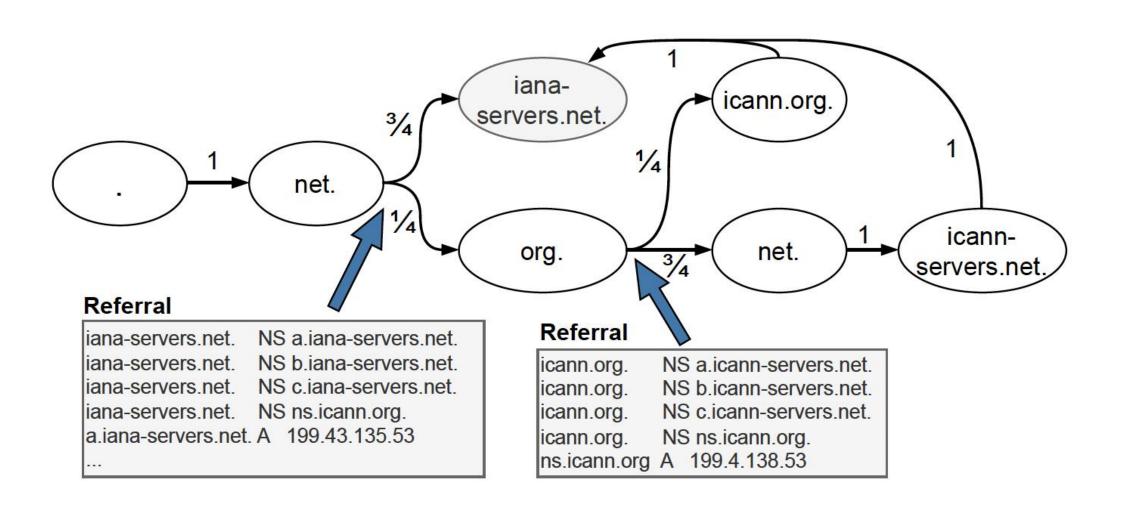
- Measurable vs non-measurable practices
- Organizational processes are usually not measurable
- Focus on observable characteristics

How can resilience be measured?

- Resilience of zones depends on their parent zone and name servers, forming a complex dependency graph.
- We extract resilience metrics based on the name servers (direct dependencies) of a zone
- To account for transitive dependencies, we develop a new method to aggregate arbitrary metrics over the full dependency graph of a domain

Different measures for different threats

Metric	Resilience against	Dataset
# auth. NSes	node failures	active scans [5]
# IP addr. of auth Nses	node failures	active scans [5]
# of ASes of NS IP addr.	routing issues	PFX2AS [6]
# of anycast addresses	site failures, DDoS	MAnycast2 [4], IPInfo [7]
# of TLDs of NS names	NS parent zone failures	active scans [5]
# of server locations	site failures, geofencing	IPInfo Location [7]


^[4] Sommese et al., "MAnycast2: Using Anycast to Measure Anycast", IMC, 2020

^[5] Steurer et al., "A Tree in a Tree: Measuring Biases of Partial DNS Tree Exploration ", PAM, 2025

^[6] CAIDA UCSD, RouteViews prefix2as dataset. https://www.caida.org/catalog/datasets/routeviews-prefix2as/, 2008

^[7] IPInfo, Trusted IP Data Provider from IPv6 to IPv4. https://ipinfo.io, 2025

Resolution graph for iana-servers.net.

Transitive dependencies

- Resolvability of a zone relies on the resolvability of its parent zone and its NSes
- To quantify the influence of (transitive) dependencies, we propose to measure the *importance* of the dependency.
- To compute the importance score, we rely on enumerating possible resolution paths

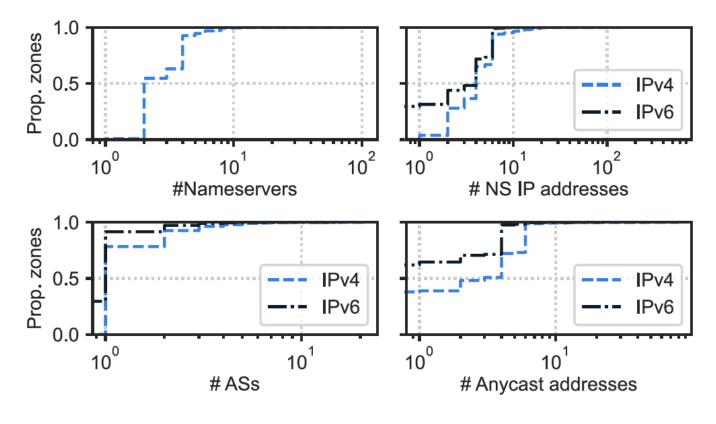
Metric aggregation

- Model possible resolutions as a weighted graph
- Assuming uniform name server selection for edge weights
- Multiply weights along each path
- importance_n(d) of dependency d for name n is the sum of weights over all paths where the dependency d occurs

Aggregate metrics over dependencies using the importance

$$M_{trans}(n) = \min_{d \in deps}(importance_n(d)^{-1} * M_{direct}(d))$$

Data Collection


- ct: Names from unexpired certificates from Certificate
 Transparency logs: Argon, Xenon, Oak, Sectico Sabre, CloudFlare
 Nimbus, DigiCert Nessie, DigiCert Yeti, and TrustAsia.
- zf: Zone files from ICANN's Centralized Zone Data Service (CZDS) and available TLDs (.se, .nu, .ee, .ch, and .li).
- opendata: Names from the open-data efforts of AFNIC [2] and SK-NIC.
- Top-lists: Names from the corresponding domain top-list such as tranco, majestic, radar, umbrella:

Target list

		#Domains	#Unique to source	#Below SLD
Source	ct	696,487,135	589,186,623	492,898,606
	zf	217,438,044	112,862,815	23,341
	opendata	4,626,781	2,489,116	72
	tranco	1,000,000	18,203	0
5.	majestic	1,000,000	45,760	921
Ę,	radar	1,000,488	18,169	345
	umbrella	1,000,000	602,276	790,167
Sı	$\mathbf{im}_{bySource}$	922,552,448	705,222,962	493,509,151
_	com	454,938,301	377,277,850	276,016,574
	net	41,284,999	36,081,396	26,418,624
Ą	org	22,798,581	17,671,810	11,033,936
I	de	17,569,119	17,522,361	10,866,642
By 7	io	12,770,554	12,750,067	11,456,784
	uk	11,503,887	11,468,806	7,062,585
	ru	9,767,399	9,694,778	7,323,877
	rest	242,113,140	222,755,894	143,330,129
Sı	\mathbf{um}_{byTLD}	812,745,980	705,222,962	493,509,151

Direct metrics

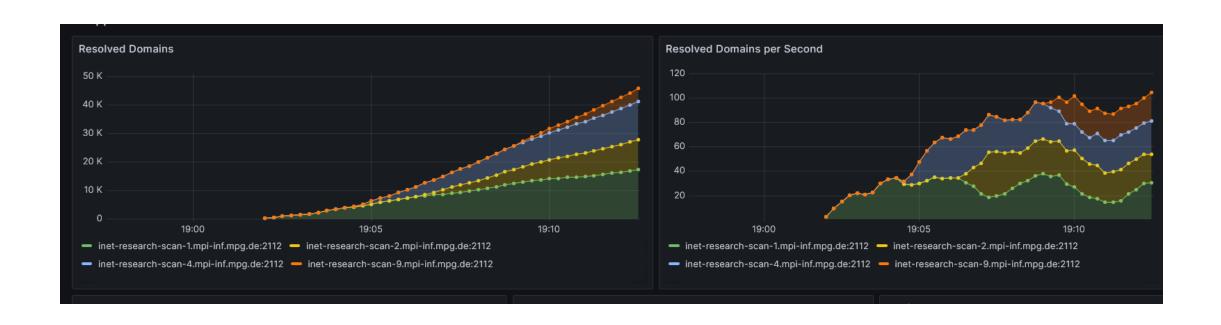
- Resilience metrics for the Tranco Top 1M domains [2]
- IPv6 deployments include fewer addresses, ASes, and rely less on anycast

Transitive vs. direct metrics

- $M_{trans} < M_{direct}$ indicates that transitive dependencies may be less resilient than the zone itself.
- Potentially reduced resilience metrics for 5.6%
 (#Nameservers) to 23.3% (#NS zones) of zones

Tooling - YouNS

YoDNS queries for DS, DNSKEY, CDS, CDNSKEY, CAA, TXT, MX, SOA, plus the TXT records



1 full scan is around 40 days

87 TB of DNS data covering 812M

Dashboard

KINDNS Measurable practices Authoritative Server operators	TLDs, SLDs and Critical Zones
Practice 1 – DNSSEC and Key management	Covered
Practice 2 – Limited zone transfer	Covered
Practice 4 – Authoritative and recursive on different servers	Covered
Practice 5 – Two distinct name servers	Covered
Practice 6.– Software diversity / Network diversity / Geographic Diversity	Covered

Thank you